Acercándonos al LHC
"Si hay una cosa que hacer es comprometerse con la educación". George Charpak (Premio Nobel en Física en 1992). |
|
El CERN celebra 70 años de descubrimientos científicos e innovación.
El Large Hadron Collider (Gran Colisionador de Hadrones) es el acelerador de partículas más poderoso del mundo. El LHC (situado en el noroeste de la ciudad suiza de Ginebra, sobre la frontera Franco–Suiza) genera la mayor cantidad de información nunca antes producida en anterior experimento. Su objetivo es revelar alguno de los secretos fundamentales de la naturaleza que quedan por descubrir.
A pesar de la enorme cantidad de datos que podemos encontrar sobre este acelerador y sus experimentos, no es sencillo para los no especialistas conocer de donde proceden esos datos y su significado.
Basicamente, el propósito de este sitio web es esencialmente divulgativo, ayudando a introducir este experimento al público en general, y al alumnado y profesorado de enseñanza secundaria, en particular, y, en menor medida, para el nivel de educación primaria. Una buena cantidad de cálculos son presentados para ser llevados a clase de secundaria, estimulando la curiosidad de los estudiantes, ayudándoles así a comprender mejor algunos conceptos de Física. Se pretende que sean un ejemplo de la relación entre las "frías" ecuaciones de la Física y el excitante mundo de la investigación científica.
A traves de varias secciones y muchas subsecciones (CERN, LHC, FÍSICA en el LHC, Detectores, Modelo Estándar, Educación, Enlaces, Noticias ... ) nos aproximamos a los contenidos que creemos que deben ser conocidos por las personas no especialistas que están interesadas en la Física de Partículas, el CERN y el LHC.
Es importante señalar que los cálculos que aparecen en este sitio web están adaptados al nivel de enseñanza secundaria, y en la mayoría de los casos, aunque puedan resultar útiles, son simples aproximaciones a los resultados correctos.
Algunos de los datos e informaciones, así como imágenes, has sido tomados de los diferentes websites del CERN, habiendo sido solicitado y concedido el correspondente permiso para ello por la administración del CERN. El uso que se hace en este Sitio Web de los diferentes materiales procedentes de las publicaciones producidas por el CERN sigue estrictamente los términos de uso que a este respecto indica el CERN.
El resto de las imágenes, gráficas, etc., no realizadas por los autores de este Sitio Web, han sido tomadas en el sentido de "fair use". Si no es el caso, por favor, hágannolo saber para retirarlas de inmediato.
Mostramos a continuación algunos hechos que son de especial relevancia, apareciendo en las diferentes Secciones de este sitio web el desarrollo de los contenidos y conceptos que consideramos de interés.
Si no estás familiarizado con los conceptos básicos de la física de partículas, te recomendamos que visites primero las distintas secciones del menú general de nuestro sitio web.
En la Sección Referencias pueden encontrarse muchos artículos y libros que tratan diferentes aspectos de la Física de Partículas, el CERN y el LHC. Además, en esta otra Sección pueden consultarse los artículos que los autores de este sitio web han publicado sobre estas cuestiones con una intención esencialmente divulgativa.
Presentamos más abajo las noticias más recientes en Física de Partículas producidas en el CERN. En la Sección Más Noticiasse encuentran las noticias de años anteriores.
CERN highlights en 2023
Tomado de CERN WEBSITE
Run 3
Año 2022, comienza el LHC Run 3 después de un vasto programa de trabajos completados durante el Long Shutdown 2 (LS2). Los protones colisionan a más alta energía (13.6 comparado con 13 TeV en Run 2) y con más luminosidad (conteniendo hasta 1.8 × 1011 protones por bunch, comparado con 1.3–1.4 × 1011) que durante Run 2. Esta tercera fase experimental, Run 3, se extiende hasta finales de 2025.
Esta tercera fase experimental se extiende hasta el final de 2025.
Unas pocas semanas después del arranque del Run3, varios récord fueron ya alcanzados.
Algunos de ellos son:
.- energía con Pb iones: 6.8 Z TeV (o 2.76 TeV/nucleón)
.- pico de luminosidad: 2.5·1034
.- pile-up (puntos de colisión casi simultáneos) > 100
.- energía almacenada por haz: ~ 400 MJ
El calendario actural prevé el comienzo del Long Shutdown 3 en 2026, un año más tarde que lo que estaba previsto, y durará tres años en lugar de 2.5 años (taken from CERN Courier)
Energía
En 2012 los protóns estuvieron girando con una energía de 4 TeV por protón. En 2013, después de un tiempo con colisiones con núcleos de Pb, entró en parada técnica de alrededor de 20 meses, para reiniciar a principios de 2015 las colisiones con una energía de 6,5 TeV por protón. Después de la Larga Parada (Long Shutdown 2, LS2) de 2019-2022, comienza la tercera fase experimental, Run 3, con la máxima energía hasta ahora alcanzada - 6,8 TeV por proton - (13,6 TeV en colisión, muy cerca ya de la energía máxima de diseño inicial, 14 TeV).
Bosón de Higgs
En cualquier caso, uno de sus principales objetivos, encontrar el bosón de Higgs, fue ya alcanzado en la fase inicial de operación.
El Premio Nobel de Física 2013 fue concedido a François Englert y Peter W. Higgs "por el descubrimento teórico de los mecanismo que contribuyen a nuestra comprensión del origen de la masa de las partículas subatómicas, y que ha sido recientemente confirmado a partir del hallazgo de la partícula fundamental asociada, en los experimentos ATLAS y CMS del Large Hadron Collider del CERN."
ATLAS y CMS anunciaron el descubrimiento de esa partícula el 4 de Julio de 2012. Este resultado fue reconfirmado posteriormente en 2013.
Candidato Higgs desintegrándose en cuatro muones registrado por ATLAS en 2012 (Imagen: ATLAS/CERN).
Artículos de interés sobre el Bosón de Higgs en el décimo aniversario de su descrubrimiento, son los siguientes:
N O T I C I A S R E C I E N T E S |
Acelerador de partículas realizando investigación científica real en CERN Science Gateway.
Dic, 2024
Tras años de desarrollo, el acelerador de protones ELISA (Experimental Linac for Surface Analysis) se utiliza ahora para la investigación arqueológica en Science Gateway, el centro de educación y divulgación del CERN.
Es la primera vez que un acelerador de protones de este tipo se utiliza para la investigación en el marco de una exposición museística.
Heavy-ion run comienza en el LHC.
Nov, 2024
Comienza un nuevo ciclo de iones pesados en el LHC, en el que se hacen colisionar iones de plomo que contienen 208 nucleones (82 protones y 126 neutrones), a una energía de 5,36 TeV por par de nucleones.
El experimento de iones pesados del LHC durará casi tres semanas y proporcionará datos suficientes para que los físicos que los analizan trabajen durante años en la comprensión de los primeros momentos del Universo.
(Imagen CERN)
El experimento ALICE del CERN se dedica a la física de iones pesados en el LHC. Su detector, construido específicamente para las medidas de iones pesados, se mejoró durante la última parada prolongada para poder recoger y almacenar muchas más colisiones que antes. El objetivo de este año es duplicar la muestra total recogida en el LHC Run 3.
A new heavy-ion run began at the LHC, smashing together lead ions, containing 208 nucleons (82 protons and 126 neutrons), at an energy of 5.36 TeV per nucleon pair.
The LHC heavy-ion run will last almost three weeks, providing enough data for years’ worth of work for physicists, who analyse this data to seek to understand the Universe’s first moments.
El Profesor Mark Thomson elegido como nuevo Director General del CERN.
Nov, 2024
El CERN Council elige al Físico Británico Mark Thomson como nuevo Director General del CERN. Su mandanto de 5 años comenzará el 1 de enero de 2026.
El Profesor Thomson es actualmente Executive Chair of the Science and Technology Facilities Council (STFC) en el Reino Unido y Profesor of Experimental Particle Physics en la Universidad de Cambridge. Has dedicado una gran parte de su carrera al CERN, donde contribuyó en las medidas de precisión de los bosones W y Z en el experimento OPAL del acelerador LEP, en los años 1990. En el acelerador LHC ha sido miembro de la Colaboración ATLAS.
Más aquí...Descifrando con precisión los quarks top.
Oct, 2024
En las colisiones entre protones del Gran Colisionador de Hadrones se producen con frecuencia pares de quarks top, las partículas elementales más pesadas conocidas, junto con otros quarks pesados, como los quarks bottom y charm. Estas colisiones pueden proporcionar a los físicos valiosos datos sobre la cromodinámica cuántica (QCD), la teoría que describe la fuerza fuerte. Determinar con precisión las tasas de producción (o «secciones transversales») de estos procesos también permite a los investigadores distinguirlos con mayor eficacia de fenómenos más raros.
(Imagen CERN)
En dos estudios recientes, la colaboración ATLAS analizó datos de colisiones protón-protón del LHC Run 2 (2015-2018) para medir la frecuencia con la que se producen pares de top-quarks junto con quarks bottom o quarks charm y explorar la dinámica detallada de estos procesos.
El experimento CMS se pronuncia sobre la masa del bosón W.
Set, 2024
La masa del bosón W ha sido medida con cada vez mayor precisión por varios experimentos de colisión, como ATLAS y LHCb en el LHC. En 2022, el experimento CDF (Fermilab) midió un valor sorprendentemente alto de su masa, 80433,5 MeV con una incertidumbre de 9,4 MeV, que difería significativamente de la predicción del Modelo Estándar y de otros resultados experimentales, lo que exigía más estudios.
(Imagen de Symmetry Magazin)
El experimento CMS ha contribuido a este esfuerzo global con su primera medida de la masa del bosón W. El esperado resultado, 80360.2 MeV con una incertidumbre de 9.9 MeV, tiene una precisión comparable a la de la medida CDF y está en línea con todas las medidas anteriores (es decir, ATLAS en 2023) excepto el resultado CDF.
El resultado muestra una vez más las excepcionales prestaciones del LHC y sus detectores.
Entrelazamiento cuántico a la máxima energía.
Set, 2024
El entrelazamiento cuántico es una característica fascinante de la física cuántica. Si dos partículas están entrelazadas cuánticamente, el estado de una de ellas está ligado al de la otra, independientemente de la distancia que las separe.
(Imagen CERN)
El entrelazamiento ha permanecido en gran medida inexplorado a las altas energías accesibles en los colisionadores de partículas como el Gran Colisionador de Hadrones (LHC). Los equipos ATLAS y CMS han observado el entrelazamiento cuántico entre un quark top y su homólogo de antimateria. Las observaciones se basan en un método propuesto recientemente para utilizar pares de quarks top producidos en el LHC como nuevo sistema para estudiar el entrelazamiento.
El LHC Run 3 alcanza un récord de luminosidad integrada.
Set, 2024
Este año 2024 la producción de luminosidad ha superado las expectativas, alcanzando, el 2 de septiembre, 88,9 fb-¹ para ATLAS y CMS, 7,6 fb-¹ para LHCb y 45,6 fb-¹ para ALICE. Con aproximadamente seis semanas de producción de luminosidad aún por delante, el objetivo para 2024 de 110 fb-¹ para ATLAS y CMS está al alcance de la mano.
Visión general de la luminosidad integrada en función de la fecha para cada año de funcionamiento del LHC, con 2024 superando ampliamente a todos los demás años.
ATLAS sondea territorios inexplorados con un trigger mejorado.
Julio, 2024
La Colaboración ATLAS publica su primera búsqueda de sucesos exóticos a una energía de colisión de 13,6 TeV.
Varios modelos de física más allá del Modelo Estándar, incluyendo la supersimetría y los modelos con dimensiones extra, predicen «partículas de larga vida» (LLP) que podrían viajar distancias significativas en el experimento ATLAS antes de decaer. Las LLP producirían productos de desintegración lejos del punto de interacción. Tales partículas requieren técnicas de reconstrucción específicas y pueden haber eludido la detección en búsquedas anteriores.
La Colaboración ATLAS ha publicado un nuevo resultado que busca pares de partículas de larga vida que decaen cada una en un electrón, muón o leptón tau, dando lugar a pares de huellas de partículas que están «desplazadas» del punto de interacción. Se trata de una firma poco común que podría ser indicativa de nuevos fenómenos físicos.
IGFAE y CERN se unen en ‘Instrumentos de Visión’, una exposición del artista Armin Linke.
Junio-Agosto 2024
El IGFAE presenta desde el 21 de junio al 28 de agosto de 2024 la exposición Instrumentos de Visión, del artista Armin Linke. El proyecto es fruto de la colaboración del IGFAE con Arts at CERN, con motivo del 25º aniversario del IGFAE y los 70 años de la fundación del CERN.
ATLAS libera 65 TB de datos abiertos para la investigación.
Julio, 2024
El Experimento ATLAS del CERN ha puesto a disposición del público, con fines de investigación, datos científicos de dos años de duración. Los datos incluyen grabaciones de colisiones protón-protón del Gran Colisionador de Hadrones (LHC) a una energía de colisión de 13 TeV. Es la primera vez que ATLAS publica datos a esta escala y marca un hito importante en el acceso y la utilización públicos de los datos del LHC.
Junio, 2024
La colaboración LHCb informa de la observación de la desintegración rara del Hyperón Σ+→pμ+μ-. Un hiperón es una partícula que contiene tres quarks, incluyendo uno o más quarks extraños.
Las desintegraciones raras de partículas conocidas son una herramienta prometedora para la búsqueda de física más allá del Modelo Estándar (SM) de la física de partículas. En el SM, el proceso Σ+→pμ+μ- sólo es posible mediante "diagramas de bucle": en lugar de que la desintegración se produzca directamente, los estados intermedios d
Diagrama de Feynman ilustrando una desintegración Σ+→pμ+μ- en el Standard Model
En la teoría cuántica de campos, la probabilidad de que ocurra un proceso de este tipo es la suma de las probabilidades de todas las posibles partículas intercambiadas en este “bucle”, tanto conocidas como desconocidas. Esto es lo que hace que un proceso de este tipo sea sensible a nuevos fenómenos. Si se observara una discrepancia entre la medición experimental y los cálculos teóricos, podría deberse a la contribución de algunas partículas desconocidas. Estas partículas podrían intercambiarse en el “bucle” o mediar directamente en esta desintegración, interactuando con los quarks y desintegrándose después en un par de muones. En este último caso, la nueva partícula dejaría una huella en las propiedades de los dos muones.
“Fantasmal acción a distancia” entre partículas pesadas.
Junio, 2024
Por primera vez, la Colaboración CMS examina, el entrelazamiento del spin de un quark top y de su antiquark, que son producidos simultáneamente a muy alta velocidad entre si. Por lo tanto, las dos partículas están muy separadas antes de desintegrarse, es decir, su distancia es mayor que la que puede cubrir la información transferida a la velocidad de la luz. La correlación entre los espines del quark y del antiquark se mide observando las distribuciones angulares de sus productos de desintegración.
La confirmación del entrelazamiento cuántico entre las partículas fundamentales más pesadas, los quarks top, ha abierto una nueva vía para explorar la naturaleza cuántica de nuestro mundo a energías mucho más allá de lo accesible, por ejemplo, en óptica cuántica. La gran tasa de producción de pares de quarks top en el LHC proporciona una gigantesca muestra de datos de quarks top, ofreciendo una oportunidad única para estos estudios.
Informe sobre el acelerador: La quinta parte del camino recorrido.
15 Mayo, 2024 (por Rende Steerenberg)
Todo el complejo de aceleradores del CERN y sus instalaciones experimentales asociadas están plenamente operativos, por lo que ha llegado el momento de repasar la primera parte de la andadura de este año y mirar hacia lo que aún está por llegar.
En el LHC, el 6 de abril se produjeron las primeras colisiones con unos pocos haces. La obtención de datos físicos significativos sólo puede comenzar cuando se producen colisiones con al menos 1200 paquetes por haz, y este hito se alcanzó el 14 de abril. Esto significa que, de los 147 días asignados a las colisiones protón-protón este año, ya se han completado 32, lo que representa algo más del 20% del Run de protones de 2024.
Durante estos 32 días iniciales, la máquina del LHC estuvo disponible el 67,2% del tiempo con haces estables en colisión el 45,2% del tiempo. El objetivo es alcanzar una proporción de tiempo de haz estable de al menos el 50%.
La producción de luminosidad también progresa según lo previsto, como puede verse en el gráfico siguiente.
Hasta ahora, la luminosidad integrada recogida ha alcanzado 17,5 fb-1, lo que supone casi el 20% del objetivo de 90 fb-1 para 2024. Para alcanzar este objetivo, se necesita una media de unos 0,8 fb-1 al día. Recientemente se ha registrado una producción récord de 1,23 fb-1 en sólo 24 horas, lo que demuestra el impresionante potencial del LHC para alcanzar el objetivo e incluso superarlo.
La CMS collaboration presentó la más precisa medida del ángulo de mezcla electrodébil.
Abril, 2024.
La colaboración CMS presentó (conferencia 2024 Rencontres de Moriond) la medida más precisa del ángulo de mezcla electrodébil leptónico efectivo realizada en un colisionador de hadrones hasta la fecha, en buen acuerdo con la predicción del Modelo Estándar.
El ángulo de mezcla electrodébil es un elemento clave de estas comprobaciones de consistencia. Es un parámetro fundamental del Modelo Estándar, que determina cómo la interacción electrodébil unificada dio lugar a las interacciones electromagnética y débil a través de un proceso conocido como ruptura de simetría electrodébil. Al mismo tiempo, vincula matemáticamente las masas de los bosones W y Z que transmiten la interacción débil. Así pues, las medidas del W, el Z o el ángulo de mezcla proporcionan una buena comprobación experimental del Modelo.
Medida de la masa y el "ancho" (width, Γ𝑊) del bosón W con el detector ATLAS.
Abril 2024.
Los datos protón-protón registrados por el detector ATLAS en 2011, a una energía de centro de masa de 7 TeV, se han utilizado para una determinación mejorada de la masa del bosón W y una primera medida de la anchura del bosón W en el LHC.
La “anchura” (width) de una partícula está directamente relacionada con su tiempo de vida y describe cómo decae en otras partículas. Si el bosón W decae de forma inesperada, por ejemplo en nuevas partículas aún por descubrir, esto influirá en la anchura medida.
Utilizando datos de colisiones protón-protón a una energía de 7 TeV recogidos durante la primera fase del LHC, ATLAS midió la anchura del bosón W en 2202 ± 47 MeV. Se trata de la medida más precisa realizada hasta la fecha por un solo experimento y, aunque un poco mayor, coincide con la predicción del Modelo Estándar con una precisión de 2,5 desviaciones estándar.
La medida actualizada de la masa del bosón W es de 80367 ± 16 MeV, que mejora y supera la medida anterior de ATLAS utilizando el mismo conjunto de datos. Los valores medidos tanto de la masa como de la anchura coinciden con las predicciones del Modelo Estándar.
LHCb collab: Medida de la mezcla D0− D0 y violación CP en D0➝ K+π− decays.
Marzo, 2024
En un seminario celebrado el 26 de marzo en el CERN, la colaboración LHCb del Gran Colisionador de Hadrones (LHC) presentó los resultados de su última búsqueda de asimetría materia-antimateria en la oscilación del mesón neutro D, que, de encontrarse, podría ayudar a arrojar luz sobre el misterioso desequilibrio materia-antimateria del universo.
Las oscilaciones de los mesones D0 e identifican como pequeños cambios en la mezcla de sabores (materia o antimateria) de los mesones D0 en función del momento en que decaen. La desintegración Kπ, de la que se ha informado hoy, es uno de los mejores canales para estudiar esta mezcla.
Los resultados concuerdan con los de estudios anteriores, confirmando la oscilación materia-antimateria del mesón D neutro y no mostrando indicios de violación CP en la oscilación. Los resultados invitan a futuros análisis de esta y otras desintegraciones del mesón D neutro utilizando los datos del tercero Run del LHC y su actualización prevista, el LHC de Alta Luminosidad.
Más aquí...Marzo, 2024
CMS Collaboration anuncia la observación de dos fotones creando dos leptones tau en colisiones protón-protón. Es la primera vez que este proceso ha sido visto en colisiones pp, siendo posible gracias a la capacidad de seguimiento de trazas del detector CMS.
Evento candidato del proceso γγ →ττ en colisiones protón–protón.
También se reporta la más precisa medida del momento magnético anómalo del leptón tau, ofreciendo una nueva forma de restringir la existencia de nueva física.
Tomado de CMS Collaboration Website.
Prueba precisa de la "universalidad del sabor leptónico" en las desintegraciones de bosones W en muones y electrones.
Marzo, 2024
ATLAS Collaboration: Prueba precisa de la universalidad del sabor leptónico en decaimientos de bosones W en muones y electrones en colisiones pp a √s=13 TeV con el detector ATLAS. (58th Rencontres de Moriond 2024)
Un axioma fundamental del Modelo Estándar es la universalidad de los acoplamientos de las diferentes familias de leptones a los bosones intermediarios de la fuerza electrodébi. La medida de la relación de la tasa de desintegración de bosones W a electrones y muones, R(μ/e), constituye una prueba importante de este axioma. Utilizando 140 fb−1 de colisiones protón-protón registradas con el detector ATLAS a una energía de centro de masa de 13 TeV, la Colaboración ATLAS informa de una medida de esta cantidad a partir de sucesos di-leptónicos en los que los quarks top decaen en un bosón W y un quark bottom.
El valor medido de R(μ/e) es 0,9995 ± 0,0045 y concuerda con la hipótesis de acoplamientos leptónicos universales postulada en el Modelo Estándar. Se trata de la única medición de este tipo realizada hasta ahora en el Gran Colisionador de Hadrones, y presenta el doble de precisión que las mediciones anteriores en otros aceleradores.
Observación de la desintegración Bc+ → J/ψ J/ψ π+ π0
Enero, 2024
LHCb Collaboration: La primera observación del decaimiento de Bc+ → J/ψ π+ π0 es reportada con alta significancia utilizando los datos de colisión protón-protón, correspondiente a una lumininosidad integrada de 9 fb-1, registrada por el detector LHCb con energías de centro de masas de 7, 8 y 13 TeV.
El mesón Bc+ (compuesto por dos quark pesados, b y c) es el mesón más masivo que solo puede decaer por interacción débil, vía el decaimiento de un quark pesado constituyente (ver diagrama). Este decaimiento de Bc+ en J/ψ y un par π+π0 no había sido observado antes, principalmente porque la reconstrucción precisa del mesón de baja energía π0 (a través de del par de fotones en que se desintegra) es un reto muy grande en los procesos de colisión protón-protón del LHC.
Diagrama para el decaimiento del mesón Bc+ en el mesón J/ψ y en hadrones ligeros
La gran cantidad de b-quarks producidos en las colisiones del LHC y la excelencia del detector, permite a la LHCb Collaboration el estudio en detalle de la producción, vias de decaimiento y propiedades del mesón Bc+. Desde el descubrimiento del Bc+ en el experimento CDF del Tevatron collider (Fermilab-Chicago), 18 nuevos decaimientos del Bc+ han sido observados (con más de cinco sigmas de desviación estándar), todas en el LHCb.
... y para saber sobre lo que se está preparando para el futuro ver HL-LHC: High Luminosity LHC y también The Future Circular Collider
Fabiola Gianotti, Directora General del CERN.
En su Sesión 195 el CERN Council (Nov 2019) nombró a Fabiola Gianotti, como Directora General de la Organización, para un segundo mandato. Este nuevo nombramiento va del 1 de enero de 2021 a diciembre de 2025. Esta es la primera vez en la historia del CERN que la Dirección General ha sido prorrogada para un segundo mandato completo.
NOTAS IMPORTANTES
Toda la Bibliografía que ha sido consultada para cada Sección está indicada en la Sección de Referencias
Reiteramos que los cálculos que aparecen en este sitio web están adaptados al nivel de la enseñanza secundaria, y en la mayoría de los casos, aunque puedan resultar útiles en general, son simples aproximaciones a los resultados correctos.
Además de las diferentes Secciones de este sitio, creemos de interés visitar otros sitios web o accder a otros documentos para tener una idea más general de la Física de Partículas. Por ejemplo: Introducción a la Física de Partículas, El Modelo Estandar de la Física de Partículas, A brief introduction to Particle Physics, u otros sitios que se indican en la sección Educación. Téngase presente que algunos de estos documentos o sitios web no están actualizados, pero consideramos que aún así proporcionan una buena información para iniciarse en la Física de Partículas.
Insistimos en que algunos de los datos e informaciones, así como imágenes, has sido tomados de los diferentes websites del CERN, habiendo sido solicitado y concedido el correspondente permiso para ello por la administración del CERN. El uso que se hace en este Sitio Web de los diferentes materiales procedentes de las publicaciones producidas por el CERN sigue estrictamente los términos de uso que a este respecto indica el CERN.
El resto de las imágenes, gráficas, etc., no realizadas por los autores de este Sitio Web, han sido tomadas en el sentido de "fair use". Si no es el caso, por favor, hágannolo saber para retirarlas de inmediato.
Un Glosario con término de Física de Partículas, en orde alfabético, está incluído en la última sección.
AUTORES Xabier Cid Vidal, Doctor en Física de Partículas (experimental) por la Universidad de Santiago (USC). Research Fellow in experimental Particle Physics en el CERN, desde enero de 2013 a diciembre de 2015. Estuvo vinculado al Depto de Física de Partículas de la USC como becario "Juan de la Cierva", "Ramon y Cajal" (Spanish Postdoctoral Senior Grants), y Profesor Contratado Doctor. Desde 2023 es Profesor Titular de Universidad en ese Departamento (ORCID). Ramon Cid Manzano, catedrático de Fïsica y Química en el IES de SAR (Santiago - España), y Profesor Asociado en el Departamento de Didáctica de Ciencias Experimentales de la Facultad de Educación de la Universidad de Santiago (España), hasta su retiro en 2020. Es Licenciado en Física, Licenciado en Química, y Doctor por la Universidad de Santiago (USC).(ORCID). |
CERN |
LHC |
NOTA IMPORTANTE
Toda la Bibliografía que ha sido consultada para esta Sección está indicada en la Sección de Referencias
© Xabier Cid Vidal & Ramon Cid - rcid@lhc-closer.es | SANTIAGO (ESPAÑA) |