Taking a closer look at LHC
Although the Standard Model has been very successful in accounting for all experimental phenomena, it is not expected to be the ultimate theory because of its great complexity and the many questions it leaves unanswered.
For example, if forces and matter particles are all there are, it says all particles must travel at the speed of light–but that is not what is being observed. To slow them down, is neccesary the Higgs field. In 2013, ATLAS e CMS, detectors in LHC, have shown the existence of this field.
It does not include the force of gravity and does not encompass the General Theory of Relativity.
Also, physicists now understand that 96 percent of the universe is not made of matter as we know it, and thus it does not fit into the Standard Model.
How to extend the Standard Model to account for these mysteries is an open question to be answered by current and future experiments.
AUTHORS Xabier Cid Vidal, PhD in experimental Particle Physics for Santiago University (USC). Research Fellow in experimental Particle Physics at CERN from January 2013 to Decembre 2015. He was until 2022 linked to the Department of Particle Physics of the USC as a "Juan de La Cierva" and "Ramon y Cajal" fellow (Spanish Postdoctoral Senior Grants), and he is currently Associate Professor in that Department.(ORCID). Ramon Cid Manzano, until his retirement in 2020 was secondary school Physics Teacher at IES de SAR (Santiago - Spain), and part-time Lecturer (Profesor Asociado) in Faculty of Education at the University of Santiago (Spain). He has a Degree in Physics and in Chemistry, and he is PhD for Santiago University (USC) (ORCID). |
CERN CERN Experimental Physics Department CERN and the Environment |
LHC |
IMPORTANT NOTICE
For the bibliography used when writing this Section please go to the References Section
© Xabier Cid Vidal & Ramon Cid - rcid@lhc-closer.es | SANTIAGO (SPAIN) |