The HL-LHC’s cold powering system

Taking a closer look at LHC

The new superconducting link developed at CERN, (Colloquially known as the “python”) is a component of the new cold powering system that will power the HL-LHC inner triplet magnets, which will focus proton beams more tightly around the ATLAS and CMS collision points.

The HL-LHC cold powering system undergoing tests in SM18. (Image: CERN)

This new system is packed with novel superconducting technologies: MgB2 superconducting cables, twisted together to form a compact bundle of about 9 centimetres in diameter, are inserted into a 22-centimetre-diameter flexible cryostat, with vacuum insulation and flowing helium gas. The MgB2 cables operate in the helium gas at temperatures from about 4.5 K to 20 K. The REBCO (rare earth barium copper oxide) high-temperature superconducting cables then transfer the current from 20 K to 50 K and, finally, current leads provide the transition from 50 K to room temperature. This system can carry a direct electrical current (DC) of around 120 kA over the required distance of 85 metres.

While the superconducting cables of the LHC magnets have to be maintained in superfluid helium (at 1.9 K) or in liquid helium (at 4.5 K), the new superconducting part of the system is capable of operating at a temperature of up to 60 K at its highest, qualifying it as “high temperature” in superconductivity terms. One of the beauties of this new system is that it operates in helium gas. The cryogenic cooling of the superconducting link is at zero cost, because it transfers the helium gas that in any case is needed to cool the current leads. This is one of the benefits of using “high-temperature superconductors”.

More here...

AUTHORS


Xabier Cid Vidal, PhD in experimental Particle Physics for Santiago University (USC). Research Fellow in experimental Particle Physics at CERN from January 2013 to Decembre 2015. He was until 2022 linked to the Department of Particle Physics of the USC as a "Juan de La Cierva", "Ramon y Cajal" fellow (Spanish Postdoctoral Senior Grants), and Associate Professor. Since 2023 is Senior Lecturer in that Department.(ORCID).

Ramon Cid Manzano, until his retirement in 2020 was secondary school Physics Teacher at IES de SAR (Santiago - Spain), and part-time Lecturer (Profesor Asociado) in Faculty of Education at the University of Santiago (Spain). He has a Degree in Physics and a Degree in Chemistry, and he is PhD for Santiago University (USC) (ORCID).

CERN


CERN WEBSITE

CERN Directory

CERN Experimental Program

Theoretical physics (TH)

CERN Experimental Physics Department

CERN Scientific Committees

CERN Structure

CERN and the Environment

LHC


LHC

Detector CMS

Detector ATLAS

Detector ALICE

Detector LHCb

Detector TOTEM

Detector LHCf

Detector MoEDAL

Detector FASER

Detector SND@LHC

 


 IMPORTANT NOTICE

 For the bibliography used when writing this Section please go to the References Section


© Xabier Cid Vidal & Ramon Cid - rcid@lhc-closer.es  | SANTIAGO (SPAIN) |

···